Radiation-induced skin injury in the animal model of scleroderma: implications for post-radiotherapy fibrosis
نویسندگان
چکیده
BACKGROUND Radiation therapy is generally contraindicated for cancer patients with collagen vascular diseases (CVD) such as scleroderma due to an increased risk of fibrosis. The tight skin (TSK) mouse has skin which, in some respects, mimics that of patients with scleroderma. The skin radiation response of TSK mice has not been previously reported. If TSK mice are shown to have radiation sensitive skin, they may prove to be a useful model to examine the mechanisms underlying skin radiation injury, protection, mitigation and treatment. METHODS The hind limbs of TSK and parental control C57BL/6 mice received a radiation exposure sufficient to cause approximately the same level of acute injury. Endpoints included skin damage scored using a non-linear, semi-quantitative scale and tissue fibrosis assessed by measuring passive leg extension. In addition, TGF-beta1 cytokine levels were measured monthly in skin tissue. RESULTS Contrary to our expectations, TSK mice were more resistant (i.e. 20%) to radiation than parental control mice. Although acute skin reactions were similar in both mouse strains, radiation injury in TSK mice continued to decrease with time such that several months after radiation there was significantly less skin damage and leg contraction compared to C57BL/6 mice (p < 0.05). Consistent with the expected association of transforming growth factor beta-1 (TGF-beta1) with late tissue injury, levels of the cytokine were significantly higher in the skin of the C57BL/6 mouse compared to TSK mouse at all time points (p < 0.05). CONCLUSION TSK mice are not recommended as a model of scleroderma involving radiation injury. The genetic and molecular basis for reduced radiation injury observed in TSK mice warrants further investigation particularly to identify mechanisms capable of reducing tissue fibrosis after radiation injury.
منابع مشابه
The impact of spironolactone on the lung injury induced by concomitant trastuzumab and thoracic radiotherapy
Background: To evaluate impact of spironolactone (S) on pulmonary toxicity of concomitant use of thoracic radiotherapy (RT) and trastuzumab (T). Materials and Methods: Eighty rats were divided into eight groups: group (G) 1 was control group; G2, G3 and G4 were RT, S and T groups; G5, G6, G7 and G8 were RT+T, T+S, RT+S and RT+T+S groups respectively. Rats were sacrificed at 6 hour, 21 and 100 ...
متن کاملEstablishment of a rat model of radiation-induced lung injury
Background: Radiation-induced lung injury is a refractory side effect in lung cancer radiotherapy, the mechanism still remains unclear, hence an appropriate animal mode may become useful to investigate it. Materials and Methods: 50 female Wistar rats were randomly divided into 5 groups, average 10 rats/cage: A. control group B. 3Gy×10f C. 6Gy×5f D. 12.5Gy×1f E.15.3Gy×1f....
متن کاملThe Evaluation of Melatonin Effect Against The Early Effect of Ionizing Radiation Induced Lung Injury
Background & Objective: Lung is a radiosensitive organ. Patients who are undergoing radiation therapy in their chest are subjected to radiation pneumonitis in the early phase and pulmonary fibrosis in the late one. Melatonin scavenges free radicals directly and acts as an indirect antioxidant through the activation of major antioxidant enzymes as well. The aim of the study thus is to investiga...
متن کاملS100A9 aggravates bleomycin-induced dermal fibrosis in mice via activation of ERK1/2 MAPK and NF-κB pathways
Objective(s): This study aims to investigate the pathogenicity and possible mechanisms of S100A9 function in mice models of scleroderma. Materials and Methods: The content of S100A9 in the skin tissues of mice with scleroderma was determined. Different concentrations of bleomycin (BLM) and S100A9 were subcutaneously injected into the backs of mice simultaneously, and then pathological changes i...
متن کاملThe Effect of Elaeagnus angustifolia L. Cream on Radiation-Induced Skin Reactions in Women with Breast Cancer; A Preliminary Clinical Trial
Radiotherapy, a highly effective way to destroy breast cancer, causes skin adverse effects. A considerable amount of studies have been conducted to find a way to alleviate or relieve dermal adverse effects of radiation. The aim of this study was to observe the clinical effect of Elaeagnus angustifolia L. cream to treat radiotherapy-induced skin destruction in breast cancer patients. thirt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation Oncology (London, England)
دوره 3 شماره
صفحات -
تاریخ انتشار 2008